Accelerated longitudinal designs: An overview of modelling, power, costs and handling missing data
نویسندگان
چکیده
Longitudinal studies are often used to investigate age-related developmental change. Whereas a single cohort design takes a group of individuals at the same initial age and follows them over time, an accelerated longitudinal design takes multiple single cohorts, each one starting at a different age. The main advantage of an accelerated longitudinal design is its ability to span the age range of interest in a shorter period of time than would be possible with a single cohort longitudinal design. This paper considers design issues for accelerated longitudinal studies. A linear mixed effect model is considered to describe the responses over age with random effects for intercept and slope parameters. Random and fixed cohort effects are used to cope with the potential bias accelerated longitudinal designs have due to multiple cohorts. The impact of other factors such as costs and the impact of dropouts on the power of testing or the precision of estimating parameters are examined. As duration-related costs increase relative to recruitment costs the best designs shift towards shorter duration and eventually cross-sectional design being best. For designs with the same duration but differing interval between measurements, we found there was a cutoff point for measurement costs relative to recruitment costs relating to frequency of measurements. Under our model of 30% dropout there was a maximum power loss of 7%.
منابع مشابه
Missing data? Plan on it!
Longitudinal study designs are indispensable for investigating age-related functional change. There now are well-established methods for addressing missing data in longitudinal studies. Modern missing data methods not only minimize most problems associated with missing data (e.g., loss of power and biased parameter estimates), but also have valuable new applications such as research designs tha...
متن کاملA Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout
Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometri...
متن کاملReview of the Methods for Handling Missing Data in Longitudinal Data Analysis
Even in well-controlled situations, missing data always occur in longitudinal data analysis. Missing data may degrade the performance of confidence intervals, reduce statistical power and bias parameter estimate. In this paper, we review and discuss general approaches for handling miss data in longitudinal studies. We first illustrate the mechanism of missing data. Then we focus on the methods ...
متن کاملValidity and Power of Missing Data Imputation for Extreme Sampling and Terminal Measures Designs in Mediation Analysis
Several authors have acknowledged that testing mediational hypotheses between treatments, genes, physiological measures, and behaviors may substantially advance our understanding of how these associations operate. In psychiatric research, the costs of measuring the putative mediator or the outcome can be prohibitive. Extreme sampling designs have been validated as methods for reducing study cos...
متن کاملMissing by Design: Planned Missing-Data Designs in Social Science
This article presents research designs that employ modern statistical tools to optimize costs and precision of research along with some additional methodological advantages. In planned missing-data designs some parts of information about respondent are purposely not collected. This gives fl exibility and opportunity to explore a broad range of solutions with considerably lower cost. Modern stat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 26 شماره
صفحات -
تاریخ انتشار 2017